The Beauty of Teaching Math

margot.gerritsen@stanford.edu
& friends
Beauty in more ways than one

Beauty in

• Mathematics itself

• Ubiquity and criticality of mathematics

• Challenges in teaching and learning
 • How to engage students?
 • How to reduce attrition
 • How to deal with very diverse cultures and learning styles
What do I actually do in STEM teaching?

• Director Institute for Computational & Mathematical Engineering
 ICME runs 60 courses in computational mathematics and scientific computing on Stanford campus, serving over 3000 students

• Teach undergraduate and graduate courses in
 o Vector calculus
 o Linear algebra
 o Numerical PDEs
 o Energy systems

• Former middle school/high school teacher and tutor

• Active mentor of women and URM in STEM

• Active in outreach and mathematics evangelism
“When it comes down to it, it’s really all linear algebra”

Gene Golub

• Strong relevance across disciplines (cool factor)
• Applications used daily (search engines, for example)
• Lends itself both to verbal as well as visual learners
\[x + y = 2\]
\[y - z = 0\]
\[x + y + z = 3\]

what are \(x, y,\) and \(z\)?
It’s all about relations

- Predicting stock prices
- Computing heat flow in a theater
- Suggesting movies in Netflix
- Googling
- Optimizing design of an aircraft wing
- Positioning of goods in grocery store
- Analyzing Bergen’s chances for a sunny tomorrow
\begin{align*}
1x + 1y + 0z &= 2 \\
0x + 1y + (-1)z &= 0 \\
1x + 1y + 1z &= 3
\end{align*}
\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & -1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

MATRIX
Stanford

California

beating
Beating Eggs
Search engine term-document matrices allow teacher to throw some big (and exciting) numbers around.
Matrices to graphs – for visual learners
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
\[
\begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}
\]

Diagram:

- Node 1 is connected to Node 2.
- Node 3 is connected to Node 2.
- Node 4 is connected to Node 1 and Node 3.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Ubiquity & Criticality

Exciting time for STEM/Comp Math
Pillar, elixir and glue
What motivates students to study math?

- Opens many doors / keeps doors open
- Versatility and agility
- Recognition that mathematics is foundational
- Desire to work in interdisciplinary teams
- Desire to help solve critical challenges
- Developing critical analysis skills
- Challenging oneself
- Money (particularly related to Data Science)

And of course students study math because it is required in engineering/sciences
Challenges

Strong diversity in classroom
Underrepresentation women and URM
Stress in students
Attrition
How to deal with strong diversity?

• Active vs passive learners
• Verbal vs visual learners
• Sequential vs global thinkers

• Different cultures and response to instructor
• Different levels of stress

• Different levels of preparation

Particularly critical in first quarter courses
What I try/do in the classroom re diversity

Active vs passive learners
- Interactive classroom style,
- with moments of individual introspection

Verbal vs visual learners
- Explain concepts in more than one way in class
- Provide additional and different materials than book

Helpful:
- Tutorials; office hours; online modules; discussion platforms
What I try/do in the classroom re diversity

Sequential vs global thinkers
• Present both top-down and bottom-up approaches
• Supply relevance, but do not rely on application knowledge in problem sets

Different cultures and response to instructor / stress
• Expectation survey at start of class
• Teaching assistants assigned to own group of students
• Midterm check-in with each student
• “WD40” for rusty students: bootcamps
What’s going on with women in math?

Currently in computational sciences (US):

- Undergraduates 20-25%
- MS/PhD 10-20%
- Faculty 2-12%
- SIAM membership 12%

Numbers have gone done since 80s (!)

Reported causes:

- stress
- family/work balance
- unconscious biasing
- subcritical mass
Stress in students is rampant

Particularly strong in first quarter of new degree
 • Adjusting to new learning and testing culture
 • Adjusting to being “average”

Poor preparation in primary and secondary education
 • Teaching to the test
 • Regurgitation, lack of creative thinking
 • Lack of grit

Increasing sense of entitlement
What causes students to drop out of math?

- Belief that they are just not any good
- Belief that they just cannot be any good, ever
- Fragile confidence – fear of failure

- Classroom atmosphere of judgment, not trust
- Lost love of learning – teaching to the test

- Little sense of usefulness, ubiquity
- Little sense of smashing careers in math fields
“I’m just not any good at mathematics”

“Innate ability” often stated early on & reinforced repeatedly

There is no math gene

Just because some people can do it with little or no training,

it does not mean that others can not do it with training

Stereotype threat

“Math is more challenging for women”

No evidence

Particularly harmful in US (low % women in comp math)

Imposter syndrome

Growth mindset vs fixed mindset
imposter syndrome
I am not as capable as people think I am

and they will find out sooner or later
It is more luck than talent that got me where I am
Stanford Survey

Conducted via Facebook friends and emailing lists

220 responses in 24 hours (80 male, 140 female)

Over 90% of answers from engineering/science fields
This applies to me never, rarely, sometimes, often or always:

2. I’m afraid of disappointing my advisor(s)

3. I often succeed on a task, even if I’m afraid I will not do well before I undertake it

4. I think it was luck more than talent that got me into grad school

5. I am afraid that my advisor/peers will find out that I am not as capable as they think I am

6. I give the impression that I am more capable than I really am

7. When I get complimented on a job well done, I often feel the person giving the compliment is merely trying to be nice

8. I am afraid that others will discover my lack of ability and/or skills

9. I compare my abilities to those around me and think they are more able than I am

10. If you answered often/always to any:
 - Do these factors affect your performance at school?
 - What, if anything, can your instructor(s)/advisor(s) do to help you deal better?
I’m afraid to be found out

I think that

often/always

43% male, 62% female

never/rarely

30% male, 15% female
I’m afraid to disappoint

I think that

Often/always

40% male, 60% female

never/rarely

18% male, 6% female
Others are more capable

I think that

often/always
50% male, 71% female

never/rarely
22% male, 6% female
More by luck than talent

I think that

often/always
30% male, 36% female

never/rarely
42% male, 34% female
If you have such feelings, is performance affected?

Male
- 52% yes, negatively ("scared", "avoidance behavior")
- 27% yes, positively ("work harder")
- 21% no

Female
- 87% yes, negatively ("scared", "avoidance behavior", "exhaustion", "negative impacts on personal life")
- 7% yes, positively ("work harder")
- 7% no
Can anything be done?

Male

45% advisor/mentor/instructor can help
5% nothing can be done by anyone
50% I need to do this myself

Female

76% advisor/mentor/instructor can help
2% nothing can be done by anyone
11% I don’t know
11% I need to do this myself
What can be done?

Frequent suggestions for advisors

Male
• Give honest and regular feedback
• Give students a sense of importance of their work
• Be more involved

Female
• Set students up for (small) confidence building successes
• Be open about stress, I.S., own failures
• Give regular encouragement and positive reinforcement
Some concluding remarks
Teaching a second rank activity?

Teaching generally undervalued

• Not a significant part of tenure or promotions
• Few resources available for (re)design course material
• Best teaching practices infrequently shared
• Career instructors do not have a clear promotion path
New teaching approaches/formats

Flipped classroom – mixed responses
MOOCs – impact on campus students

Create more flexible, smaller teaching units
(1-unit classes and short courses, often online)
• Improves efficiency and reduces overlaps
• Allows for professional education, life-long learners
• Provides low-risk teaching opportunities for graduate students
Mindset

• Support the growth mindset – for students and yourself
• Trust, don’t judge – allow for (frequent) failure
• Reward progress – what matters is final mastery
mAth

Anxiety
- Detect symptoms of fixed mindset
- Bring students in at right level
- Set high standards, but show students how to reach them

Agility
- Deliver strong foundations – deep understanding
- Focus on love of learning
Symptoms of (partially) fixed mindset

• “This one low score shows I just cannot do it”
 Midquarter crisis, attrition

• “My low score is your fault”
 Strong resistance to admitting lack of understanding

• “There’s no point in studying”
 Need for study would show lack of innate ability
 Also fear of failure after studying

• “I’m good in calculus, just not in algebra”
 Confidence in one ability, not in another
Tenacity

- Emphasize that growth does not happen without effort
- Force/motivate students to work each day – bootcamp
- Encourage group work and interaction, cohort formation
Honest & constructive feedback

• Make students comfortable with mistakes
• Evaluate fairly - A’s for effort do not help in long run

High standards

• Set high standards – no need to cuddle students
• Show students how to reach standards and give them the support they need
Teach students to
• love challenges
• be intrigued by mistakes
• enjoy effort
• keep on learning

Beautifully argued in Mindset by Carol Dweck